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A closed-form description is proposed to explain nonlinear and slow dynamics effects exhibited by sand-
stone bars in longitudinal resonance experiments. Along with the fast subsystem of longitudinal nonlinear
displacements we examine the strain-dependent slow subsystem of broken intergrain and interlamina cohesive
bonds. We show that even the simplest but phenomenologically correct modeling of their mutual feedback
elucidates the main experimental findings typical for forced longitudinal oscillations of sandstone bars, namely,
(i) hysteretic behavior of a resonance curve on both its upward and downward slopes,(ii ) linear softening of
resonant frequency with an increase of driving level, and(iii ) gradual recovery(increase) of resonant frequency
at low dynamical strain after the sample was conditioned by high strain. In order to reproduce the highly
nonlinear elastic features of sandstone grained structure a realistic nonperturbative form of stress-strain relation
was adopted. In our theory slow dynamics associated with the experimentally observed memory of peak strain
history are attributed to strain-induced kinetic changes in concentration of ruptured intergrain and interlamina
cohesive bonds, causing a net hysteretic effect on the elastic Young’s modulus. Finally, we explain how
enhancement of hysteretic phenomena originates from an increase in equilibrium concentration of ruptured
cohesive bonds that are due to water saturation.
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Apart from their excellent static characteristics as build-
ing materials, sandstones have been shown to demonstrate a
number of unexpected and even surprising dynamical prop-
erties [1–5]. Here we consider the numerous experimental
results on nonlinear resonant response exhibited by sand-
stone rods in forced longitudinal oscillations that appear
even at extremely small forcing levels and consequently at
small dynamic strain[1–5]. The most intriguing nonlinear
feature is slow dynamics, which are defined here as long-
term (minutes to hours) changes of elastic properties in re-
sponse to a disturbance such as dynamic and static strain or
temperature.

Specifically, we have to emphasize that in the vicinity of
bar resonant frequency the longitudinal alternating drive pro-
duces strong essentially nontrivial nonlinear responses:(1)
At high drive levels the effective width of resonance curves
depends on the direction of frequency sweep; it is narrower
for upward sweeps(i.e., from lower to higher frequencies)
than at downward sweeps(i.e., from higher to lower frequen-
cies) [1–5]. This effect proves to be a typical manifestation
of slow dynamics and can be treated as hysteresis both on
low- and high-frequency slopes of a resonance curve.(2) The
resonance peak is shifted toward lower frequency almost lin-
early with an increase of driving amplitude[1,4]. (3) Other
evidence of slow dynamics comprises gradual recovery(in-
crease) of resonant frequency to its original value as defined
at extremely low drive level after the sample has been con-
ditioned at a high drive level[3,5].

These facts cannot be understood in the framework of
standard theories of resonant nonlinear response[6] and im-
ply memory of peak strain history[2]. Some aspects of the
problem have been explained by the interpretation of Guyer

et al. [7] in the framework of a McCall-Guyer quasistatic
model [8]. This approach uses the concept of auxiliary hys-
teretic elements that allows the introduction of an additional
nontrivial nonlinear term in the dynamical equation for the
field of longitudinal displacements. However, this theoretical
treatment lacks completeness in that it initially neglects the
dynamics of hysteretic elements and postulates temporal
evolution of the amplitude-frequency characteristic(the key
point of claimed results) to be developed afterwards. Al-
though Capogrosso-Sansone and Guyer recently suggested
dynamical realization of the McCall–Guyer quasistatic
model [9], evaluating its adequacy to explain experimental
data turns out to be difficult.

In this rapid communication we omit the idea of auxiliary
hysteretic elements as the sole approach for treating all pe-
culiar hysteretic phenomena and call attention to an alterna-
tive idea used by Davydov and Ermakov for the description
of bistability in nonlinear resonant tunneling of electrons
through a set of potential barriers[10]. Their approach con-
sists of explicit but physically motivated separation of a
given physical system into two nonlinear subsystems,
namely, fast and slow subsystems with mutual coupling
taken into account.

For sandstone bars we identify the fast subsystem with the
field of rapid longitudinal displacements while the slow sub-
system represents the concentration of defects in intergrain
contact bonds. In doing this we bear in mind that, because of
preferable vapor condensation onto surfaces with greater
concave curvature[11], the sandstone pore structure[4,11]
retains some residual pore water[11], and its impact on the
resonant properties of rock is crucial[12,13]. Thus, thermo-
dynamical estimations applied to porous rocks show that in-
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tergrain cohesive forces become weaker in the presence of
water [14] that agrees with an alternative conception of
swelling pressure[13,15]. This treatment is supported by re-
cent experiments[13] that establish an abrupt decrease in the
Young’s modulus within the first 20% interval of water satu-
ration (i.e., until the degree that void surfaces become com-
pletely wet). We could additionally invoke ordinary capillary
forces [13] or hydrolysis of silicon-oxygen-silicon bond
chains [16] in our consideration. However, either of these
mechanisms also leads to softening of the Young’s modulus
with an increase of saturation. Here the significant issue is
apparently not in excessive(presumably unclaimed) details
of all plausible mechanisms that might modify the Young’s
modulus in a qualitatively similar way, but in their reason-
able concise formalization by means of a minimal number of
slow fields.

According to Kosevich[17] the equilibrium concentration
of defects associated with a stresss is given by the formula,

cs = c0 expsvs/kTd, s1d

wherek andT are the Boltzmann constant and the absolute
temperature, respectively, and the parameterv.0 stands for
a typical volume that accounts for a single defect and char-
acterizes the intensity of dilatation. The equilibrium concen-
tration of defects in an unstrained barc0 has to be some
function of both temperatureT and water saturations. In
order to describe strain-induced changes in nonequilibrium
concentration of defectsc, we assume that at any instant of
time t the concentrationc must evolve to its would-be equi-
librium valuecs, where the stresss in Eq. (1) is applied at
the same instant. Supposing the distributions of activation
barriers for defect annihilationU and activation barriers for
defect creationW are uniform, respectively, over the ranges
U0øUøU0+U+ and W0øWøW0+W+ with U0, U+ and
W0, andW+ being insensitive to the choice of bar cross sec-
tion, then we will deal with the density of defect concentra-
tion g governed by the following kinetic equation:

] g/] t = − fmusg − gsd + nusgs − gdgsg − gsd. s2d

Here m=m0 exps−U /kTd and n=n0 exps−W/kTd are the
rates of defect annihilation and defect creation, respectively,
gs=cs /U+W+, anduszd designates the Heaviside step func-
tion. The quantitiesg andc are related by the simple defini-
tion

c =E
U0

U0+U+

dU E
W0

W0+W+

dW·g. s3d

Under tensile load there is an immense number of spatial
ways for the intergrain cementation contact to be cleaved
with the same basic result: the creation of crack. A similar
multivariant scenario is true also for the already existing bal-
anced crack to be further expanded. On the contrary, under
compressive load the crack once emerged has only one spa-
tial way in which to be annihilated or contracted. These ob-
servations are the principal ones and imply the huge disparity
n0@m0 between the priming ratesn0 andm0 notwithstanding
the generic cohesive properties of cementation material.
Moreover, because of possible water intercalation and/or

fragmentation of cementation material between the opposite
faces of crack we can expect the typical value of barrierU to
exceed that of barrierW. In combination all these factors
might sustain even the more immense disparityn@m be-
tween the actual ratesn andm of defect creation and defect
annihilation, apparently comprising many orders, and as a
result provide the physical mechanism that breaks the sym-
metry of system response to an alternating external drive and
acts as a sort of soft ratchet or leaky diode.

To express the evolution equation,

r
]2u

] t2
=

] s

] x
+

]

] x
F ] F

] s]2u/] x ] tdG , s4d

for the field of longitudinal displacementsu we choose the
stress-strain relation in the form

s =
E sechh

sr − adfcoshh ] u/] x + 1ga+1

−
E sechh

sr − adfcoshh ] u/] x + 1gr+1 , s5d

which at r .a.0 allows one to block the bar compressibil-
ity at strain]u/]x tending toward +0−sechh. To put it dif-
ferently, the parameter sechh is reserved for the typical
thickness of intergrain cementation contact divided by the
typical distance between the centers of neighboring grains.
The dissipative functionF we take in the form

F = sg/2df]2u/] x ] tg2, s6d

giving rise to Stokes internal friction[18]. Herex denotes the
longitudinal Lagrange coordinate of the bar sample. The
quantitiesr and g are, respectively, the mean density of
sandstone and the coefficient of internal friction in an elastic
subsystem. We ignore their dependence on temperature and
water saturation assuming that the main effect is manifested
through the linear decrease of Young’s modulusE with the
concentration of defects,

E = s1 − c/ccrdE+. s7d

Hereccr andE+ are the critical concentration of defects and
the maximum possible value of the Young’s modulus, re-
spectively. Both of these parameters we also take to be inde-
pendent of the temperature and water saturation.

Typical resonant response experiments[1–5] correspond
to kinematic excitation[19] of a bar, which we associate with
the following boundary conditions:

usx = 0utd = DstdcosSw +E
0

t

dtvstdD , s8d

] u

] x
sx = Lutd = 0, s9d

whereL is the sample length andt.0. The driving ampli-
tudeDstd is assumed to be basically constant except for the
moments when the driving system is switched on, is
switched into another constant driving level, or is switched
off. The time dependence of cyclic driving frequencyvstd in
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turn is prescribed by the chosen regime of frequency sweep.
Initial conditions are given in the form

usxut = 0d = 0,
] u

] t
sxut = 0d = 0 s0 , x , Ld, s10d

gsxut = 0d = c0/U+W+ s0 , x , Ld. s11d

When experimental data for the Young’s modulus in un-
strained samples are obtainable from the resonant response
experiments by the use of a low amplitude protocol(very
small driving amplitude and negligible number of strain-
induced defects), we can compare them with values taken
from Eq. (7) at c=c0 in order to fit the equilibrium concen-
tration of defectsc0 as a function ofT and s by some ex-
trapolation formula. In particular, relying upon Sutherland
temperature extrapolation[20] and analyzing temperature
dependent data at zero saturation[21] and saturation depen-
dent data at room temperature[13] for Berea sandstone, we
suggest the formula

c0 = ccrS T

Tcr
D2Fcosh2 a − expS−

bs

1 − s
Dsinh2 aG , s12d

with the following fitting parameters:Tcr=1475 K, cosh2 a
=16, b=10. Here the saturation can vary within the interval
0øsø1. At sÞ0 this approximation is expected to work at
least for temperatures that exceed the freezing point of pore
water.

Computer modeling of nonlinear and slow dynamics ef-
fects was performed in the vicinity of the resonant frequency
f0s2d, which we understand to be the second frequencysl
=2d in the fundamental set,

f0sld =
2l − 1

4L
ÎS1 −

c0

ccr
DE+

r
sl = 1,2,3, . . . ,d, s13d

given by the linear theory of kinematic excitation for zero
dissipationg=0.

Figure 1 shows typical resonance curves, i.e. dependences

of response amplitudeR (calculated atx=L) on drive fre-
quencyf =v /2p, at successively higher drive amplitudesD.
The solid lines correspond to the conditioned resonance
curves calculated after two frequency sweeps were per-
formed at each driving level in order to achieve repeatable
hysteretic curves. The dashed line illustrates an uncondi-
tioned curve obtained without any preliminary conditioning.
Arrows on the three highest curves indicate sweep directions.
For the sake of definiteness the results of the computer simu-
lation were adapted to the experimental conditions support-
ing the data obtained by Ten Cate and Shankland for Berea
sandstone[2]. In particular, the ratioE+/r was estimated by
means of relationships(13) and (12) with the second order
frequency, bar length, temperature and saturation as follows:
f0s2d=3920 Hz,L=0.3 m,T=297 K ands=0.25. The ratio
g /r that characterizes internal friction was chosen from the
best fit of the low amplitude theoretical curve(Fig. 1) to its
experimental counterpart[2] using quality factorQ from the
resonance width. The parametersm0 exps−U0/kTd=1 s−1

and U+/k=2525 K that determine the character of slow re-
laxation were estimated according to the experimental mea-
surements of decay of acceleration at fixed frequency[2] and
observations of recovering resonant frequency as a function
of time [5]. The combination of parametersvE+/k coshh
=275 K was chosen to quantitatively reproduce the hyster-
etic phenomena in the sweep regimes typical for the actual
experiments[2]. The nonlinearity parameter coshh=2300
was estimated to map the true asymmetry of experimental
resonance curves[2]. Other parameters appearing in stress-
strain relation(5) have been adopted as follows:r =4, a=2.

We would like to stress that through the drop of equilib-
rium concentrationc0 our theory is able to catch the dramatic
suppression of hysteresis with decreases of water saturation
[see Eq.(12)]. This conclusion has been confirmed by direct
computation(not shown). Simultaneously we have observed
a monotonic decrease in quality factorQ with an increase of
saturation, i.e., precisely the well documented tendency in
experiments[12]. In present theory this is due to the drop of
resonant frequency with the water saturation[see Eq.(13)].

Figure 2 compares the shifts of resonant frequency as

FIG. 1. Resonance curvesj =0,1,2,3,4,5 atsuccessively
higher driving amplitudesDj =3.8s j +0.2d j0d10−8L. The time to
sweep back and forth within the frequency interval 3700–4100 Hz
is chosen to be 120 s.

FIG. 2. Negative of the shiftf r − f0 of resonant frequencyf r

from its asymptotic valuef0 as a function of driving amplitudeD
for the hysteretic nonlinear material(curve 1) and for the classical
nonlinear material withv=0 (curve 2).
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functions of the driving amplitude at two essentially different
values of dilatation parameterv while other parameters were
kept the same as in Fig. 1. Thus curve 1 calculated at
vE+/k coshh=275 K, when the strain-induced feedback be-
tween the slow and the fast subsystems is substantial, dem-
onstrates the almost linear dependence typical of materials
with nonclassical nonlinear response, i.e., materials that pos-
sess all the basic features of slow dynamics. On the other
hand, curve 2 calculated atv=0, when the strain-induced
excitation of the slow subsystem is absent and hence the
mutual feedback between the slow and the fast subsystems is
totally broken, demonstrates the almost quadratic depen-
dence typical of materials with classical nonlinear response.

Finally, Fig. 3 shows the gradual recovery of resonant
frequencyf r to its maximum limiting valuef0 after the bar
has been subjected to high amplitude conditioning and con-
ditioning is stopped. We have plotted three different curves
corresponding to three different saturations with all other
model parameters adopted earlier for Fig. 1 preserved. The
total shift of resonant frequencyf r − f0 consists of two physi-
cally different parts, namely,(i) the traditional dynamic shift
caused by strain nonlinearity at high levels of excitation and
(ii ) the shift caused by the effect of the slow subsystem.
However, only the second part might actually be registered
during the recovery process, because the first one vanishes
almost instantaneously when the conditioning was switched
off. Hence, the whole character of recovery should inevitably
be governed by the slow kinetics responsible for restoration
of intergrain bonds. From Fig. 3 we clearly see the very wide
time interval 10ø st− tcd / t0ø1000 of logarithmic recovery

of the resonant frequency, in complete agreement with ex-
perimental results[5]. Here tc, is the moment when condi-
tioning switches off andt0=1 s.

This work was carried out within the framework of
Project No. 1747 supported by the Science and Technology
Center of Ukraine.
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FIG. 3. Time-dependent recovery of resonant frequencyf r to its
asymptotic valuef0. Curves j =1,2,and 3correspond to succes-
sively higher saturationssj =0.05s2j −1d. The frequency shiftf r

− f0 is normalized by both the asymptotic frequencyf0 and the
unitless response amplitudeR/L attained at conditioning resonance.
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